High bactericidal efficiency of type iia phospholipase A2 against Bacillus anthracis and inhibition of its secretion by the lethal toxin.
نویسندگان
چکیده
There is a considerable body of evidence supporting the role of secretory type II-A phospholipase A(2) (sPLA(2)-IIA) as an effector of the innate immune response. This enzyme also exhibits bactericidal activity especially toward Gram-positive bacteria. In this study we examined the ability of sPLA(2)-IIA to kill Bacillus anthracis, the etiological agent of anthrax. Our results show that both germinated B. anthracis spores and encapsulated bacilli were sensitive to the bactericidal activity of recombinant sPLA(2)-IIA in vitro. In contrast, nongerminated spores were resistant. This bactericidal effect was correlated to the ability of sPLA(2)-IIA to hydrolyze bacterial membrane phospholipids. Guinea pig alveolar macrophages, the major source of sPLA(2)-IIA in an experimental model of acute lung injury, released enough sPLA(2)-IIA to kill extracellular B. anthracis. The production of sPLA(2)-IIA was significantly inhibited by B. anthracis lethal toxin. Human bronchoalveolar lavage fluids from acute respiratory distress syndrome patients are known to contain sPLA(2)-IIA; bactericidal activity against B. anthracis was detected in a high percentage of these samples. This anthracidal activity was correlated to the levels of sPLA(2)-IIA and was abolished by an sPLA(2)-IIA inhibitor. These results suggest that sPLA(2)-IIA may play a role in innate host defense against B. anthracis infection and that lethal toxin may help the bacteria to escape from the bactericidal action of sPLA(2)-IIA by inhibiting the production of this enzyme.
منابع مشابه
Edema Toxin Impairs Anthracidal Phospholipase A2 Expression by Alveolar Macrophages
Bacillus anthracis, the etiological agent of anthrax, is a spore-forming gram-positive bacterium. Infection with this pathogen results in multisystem dysfunction and death. The pathogenicity of B. anthracis is due to the production of virulence factors, including edema toxin (ET). Recently, we established the protective role of type-IIA secreted phospholipase A2 (sPLA2-IIA) against B. anthracis...
متن کاملBacillus anthracis Lethal Toxin Disrupts TCR Signaling in CD1d-Restricted NKT Cells Leading to Functional Anergy
Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC) stimulates TCR signaling and activation of type-1 natural killer-like T (NKT) cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT) on NKT cells both in vivo ...
متن کاملAntibacterial effects of human group IIA and group XIIA phospholipase A2 against Helicobacter pylori in vitro.
Group IIA phospholipase A2 (PLA2-IIA) is an enzyme which has important roles in inflammation and infection. Recently, a novel human secretory PLA2 called group XIIA PLA2 (PLA2-XIIA) has been identified. Both PLA2-IIA and PLA2-XIIA are bactericidal against Gram-positive bacteria like many other secretory PLA2s. However, PLA2-XIIA is the only known PLA2 displaying significant bactericidal activit...
متن کاملEvaluation the Efficacy of Anthrax Vaccine against Challenge with a Highly Virulent Strain of Bacillus anthracis Isolated from Soil in Sheep, Goats and Guinea Pigs in Iran
Protection of animals immunized against Bacillus anthracis is usually demonstrated by challenging with an appropriate dose of a strain of Bacillus anthracis that is lethal to unvaccinated animals inoculated at the same time. In this study the protective efficacy in anthrax vaccine (34F2 sterne strain spore) was evaluated in sheep, goats and guinea pigs challenged with subcutaneous inoculation...
متن کاملAnthrax lethal toxin impairs innate immune functions of alveolar macrophages and facilitates Bacillus anthracis survival.
Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses. Although several factors contribute to inhalational anthrax, we hypothesized that unimpeded infection of Bacillus anthracis is directly linked to disabling the innate immune ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 173 1 شماره
صفحات -
تاریخ انتشار 2004